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Eccentricity based topological indices of a hetrofunctional
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In a molecular graph G withvertexset V | the eccentricity ec(u) ofavertex U €V isthe maximum distance between u

and any other vertex of G . The eccentric connectivity index f(G) of G is defined by Zevd (v)ec(v),where d(v) isa

degree of vertex V€V . In this paper, we consider a hetrofunctional dendrimer HFD(ei) and compute its eccentric
connectivity index. Moreover, we compute some eccentricity based Zagreb indices of this dendrimer.
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1. Introduction

Dendrimers are macromolecules which are highly
branched and possess large number of functional group
distributed over dendritic framework. Due to this feature,
compared to linear polymer of same molecular weight,
dendrimers exhibited an array of applications such as
cancer therapy and biosensors for diagnostics.
Hetrofunctional dendrimers have ability to include a large
and exact number of different functional group within
framework without compromising the structural features.
Hetrofunctional dendrimers (HFD) are today considered to
have large number of potential applications than traditional
dendrimers [12]. A molecular graph represents the topology
a molecule, where vertices represent the atoms and edges
represent the covalent bonds. Through numerical
graph-theoretic invariants, one can derive chemical
information which are useful in chemical documentation,
structural-property correlations and chemical
structural-biological activity relationships [4]. For several
years, many such graphs-theoretic invarients have been
studied. These graph-theocratic invarients are called
topological indicies which are molecular descriptors
derived from information on connectivity and composition
of molecules and are used for the mathematical
characterization of molecules [9]. Recently, many
researchers focussed to conjecture topological indices of
nanostructures by using computational tools [2, 10, 11].

Let G be an N -vertex molecular graph with vertex set

V(G) and edge set E(G). The order and size of G
are |V(G)| and | E(G)|, respectively. The distance
d(u,V) between two vertices U,V eV (G) is the length
of a shortest path from U to V. The eccentricity ec(u)
of avertex U €V (G) is defined as

ec(u) = max{d(u,v)|veV(G)}. (1)

One of the oldest distance based topological index is
the Wiener index [13] which is defined as half sum of the
distances between all pairs of vertices in a graph. Another

distance based topological index of the graph G is the
eccentric-connectivity index &(G) which is defined as:

&(G)= Y ec(u)d(u),

veV (G)

where d(u) is the degree of a vertex U eV (G) . For
further detail on these and some other topological indices,
we refer [1, 7, 14]. Gutman and Trinajstic [8] introduced
Zagreb indices which are defined as:

My(G)= D (d(v))*, @
veV (G)

M,(G)= > du)d(v). ®
uveE(G)

Ghorbani and Hosseinzadeh [6] introduced some same
new versions of Zagreb indices which are based on
eccentricity and are defined as:

M;(G)= D (ec(v))?, @)
veV (G)

M; (@)= Y ec(u)ec(v) ©)
uveE(G)

Farooqg  and Malik  [5] computed  the
eccentric-connectivity index and eccentricity based Zagreb
indices for some infinite families of nanostar dendrimers.
Ashrafi and Saheli [3] also obtained the eccentric
connectivity index of some families of nanostar



1800 R. Farooq, N. Nazir, M. Ali Malik, M. Arfan

dendrimers. In this paper, we select the interior and exterior
HFD(ei) possessed internal hydroxyl group and peripheral
allyls group and compute its eccentric connectivity index

& . Moreover, we also compute eccentricity based Zagreb

indices M, and M, of this dendrimer.

2. HFD(ei) dendrimer

HFD are considered as state-of-art macromolecules
having a large number of potential applications. With
respect to positions of hetrofunctional group in HFD, there
are following three possibilities: external (e); internal (i); or
combination of external and internal (ei). In this paper, we
select a HFD(ei)-G3-e(allyl)16-i-(hydroxyl)28 denoted by
D[n] and shown in Fig. 1, which is an HFD with internal
hydroxyl and peripheral allyl group. The graphs
corresponding to different growth stages are shown in Fig.
2—3. Itis evident that order and size of D[n] are equal.

The order and size of D[n] is given below:

16x 2" +8x2' —38

V (D[] I=| (D[] [= {2 e o2tz

if n=2t+1,t>0.

Fig.1: D[n] with N=6.

a. n=1 b. n=2
Fig.2: D[Nn] withthe N =1 (the core)and N = 2.

Fig. 3: One branch of D[] with N =3,4 and 5.

3. The eccentric connectivity index

This section is devoted to the computation of the
eccentric connectivity index of the dendrimer D[n]
shown in Fig. 1.

Theorem 3.1 The eccentric connectivity index of D[n]
for n=2t+1 where t>0 is given by

E(D[n]) = 2112t x 2' —936x 2' —836t +1036. (6)

Proof. Using symmetry of the nanostar dendrimer D[n],

we use only one branch of D[n] as labeled in Fig. 2 —3.

We take one representative from a set of vertices which
have same degree and eccentricity. These representatives

are labeled by vV, W, X, y, &, bi, G, di, €, f.,

g, N Vi, W, X, Y. Here 1<i<"=1 when
2

N> 3. The representatives of vertices of D[n] with their

degrees, eccentricities and frequencies of occurrence are
given as follows.

Table 1: The vertices introduced for the core (first generation)
with their degree, eccentricity and frequency for N = 1,

Representative | Degree | Eccentricity | Frequency
Vv 2 11t +4 4
w 3 11t +5 2
X 2 11t+6 2
y (n=1) 1 7 2
y (n#1) | 3 | 11t+7 2

where N is odd.
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Table 2: The vertices introduced at second generation with their
degree, eccentricity and frequency for N >3, where N is odd.

Representative | Degree | Eccentricity |Frequency
a, 2 |11t+1h-3| 2+
b, 3 [11t+1%li-2| 2o+
o 2 [11t+11i-1 21+
d, 1 |11t+1%i-1 21+
e 2 11t +11i 21+
f, 2 | 11t+1%i+1 2+
g 2 (11t +1%i+2| 2o+
h 2 |11t+11+3| 2+

Table 3: The vertices introduced at third generation with their
degree, eccentricity and frequency for N >3, where N is odd.

Representative | Degree | Eccentricity |Frequency
v, 2 |11t+11i+4| 2+
W, 2 |11t+11i+5| 2+
X, 2 |11t+1li+6| 2
y;(i=t) 1 [1U+1%i+7| 2+
y. (i #t) 3 |11t+1%i+7| 2+

When N =1 then t=0. Using Table 1, the eccentric
connectivity index of D[1] can be written as follows:

&(D[LD) = D d(u)e(u)

ueD[n]
= (4x2x4)+(2x3x5)+(2x2x6) +(2x1x7)
=100
=2112(0)x 2° —936x 2° —836(0) +1036.

When N=3 then t=1. Using Tables 1 and 2, the
eccentric connectivity index of D[3] can be written as
follows:

&(D[3N) = D d(u)e(u)

ueD[n]
= ((4x2x15)+ (2x3x16) + (2x2x17) + (2x3x18)) + ((4x 2x19) + (4% 3x 20)
+(4x2%x21)+(4x1x21) + (4% 2% 22) + (4x 2x 23) + (4x 2x 24) + (4x 2x 25))
+((4x2x26)+ (4% 2x27) + (4% 2x 28) + (4x1x 29))
= 2552
=2112(1)x 2" —936x 2" —836(1) +1036.

When N >5, then using Tables 1—3, the eccentric
connectivity index is obtained as follows:

&(DInD) = . d(u)ec(u)

ueBin]
=((2x4)x (11t +4) + (3% 2) x (11t +5) + (2% 2) x (11t + 6)
+(Bx2)x (11t + 7)) + Zt:(zx 2" % (11t +11i - 3)
+3%x 2" x (11t +12i —2|)_1+2><2i+1 x (11t +12i —1)
+ 2" (12 +118 —1) + 2% 2 x (11t +11i)

+2x 2" x (11t +120 +1) + 2% 2™ x (11t +11i + 2)

+2x 2" x (11t +12i + 3)) + D (2% 2" x (11t +11i + 4)

i=1

+2x 2" x (11t +12i +5) + 2x 2" x (11t +11i + 6))

t-1 )
+ > (3x 2™ x (11t +11i + 7) +1x 2" x (22t + 7))

i=1

= 2112t x2' —936x2' —836t +1036.

The proof is complete.

Theorem 3.2 The eccentric connectivity index of D[n],
for N=2t, where t>1 isgiven by

E(D[N]) =1760t x 2 —1336x 2 —836xt +1340. (7)

Proof. Using symmetry of the nanostar dendrimer D[n],

we use only one branch of D[n] as labeled in Fig. 2 —3.

We take one representative from a set of vertices which
have same degree and eccentricity. These representatives
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are labeled by vV, W, X, y, &, b, ¢, d., e, f, Representative | Degree | Eccentricity |Frequency

f, 2 |11t+11i-3| 2+

g, h . Here 1<i<!. i : .
2 g, 2 |11t+11i-2| 2t

Table 4: The vertices introduced for the core (first generation) . - -
with their degree, eccentricity and frequency h(i=t) 1 [11t+1L-1 2+t

f >2,where N i - . :
or N>2,where N iseven hi (i%1) 5 11t +11i -1 oirt

Representative | Degree | Eccentricity | Frequency

Vv 2 11t 4 Now we take representative from a set of vertices which are
W 3 11t +1 5 introduce at N =3 and have same degree and eccentricity
X 2 11t +2 2 also. These representatives are labeled V; , W, , X; , Y, .
y 3 11 +3 2 Here 1<i<t—1and t=n/2.

Table 5: The vertices introduced at second generation with their Table 6: The vertices introduced at third generation with their

degree, eccentricity and frequency for N> 2, where N iseven  degree, eccentricity and frequencyfor N >4, where N iseven

Representative | Degree| Eccentricity |Frequency Representative | Degree | Eccentricity |Frequency
a; 2 [11t+1%Li-7 i+t Vi 2 11t +11 i+l
b, 3 [11t+11i-6| 2 W, 2 [11t+12i+1] 2+
C 2 |11t+11i-5| 2+ X; 2 |11t +1%li+2| 2+
d; 1 [11t+11i-5| 2+ Yi 3 |12t+1%Li+3| 2+
€ 2 |1 +11i-4| 2

When N =2 then t =1. Using Table 4, we get

&D2D= >, d(u)ec(u)

ueV (D[n])
= ((4x2x11)+(2x3x12) +(2x2x13) + (2% 3x14)) + ((4x 2x15) + (4x 3x16)
+(4x2x17) + (Ax1x17) + (4% 2x18) + (4x 2x19) + (4x 2x 20) + (4x1x 21))
=1352
=1760(1) x 2" —1336x 2" —836x1+1340.
When N>4 then using Tables 4 — 6, the eccentric connectivity index of D[n] can be written as follows.

&(DIn) = > d(u)ec(u)

ueDI[n]

=(2x4x1Ut+(3x2)x (AU +1)+ (2x2)x (A1t +2) + (3% 2) x (11t + 3))
+ (Zt:(ZX 2" (11t +11i — 7) + 3% 2" x (11t +11i — 6)

=
+2x 2" % (10t +12i —5) +1x 2™ x (12t +12i —5) + 2% 2" x (11t +11i —4)
+2x 2" % (11t +12 —3) + 2% 2 x (11t +11i — 2))

+ i(z x 2 x (11t +11i 1)) + (1x 2" x (22t —1)))

t-1 ) _
+ (O (2% 21" x (11t +12) + 2% 2" x (11t +11i +1)

i=1

+2x 2" % (18 +120 + 2) + 3x 2" x (11t +11i + 3))),
=1760t x 2' —1336x 2' —836xt +1340.
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The proof is complete. indices defined by Equations (4) and (5).
Theorem 4.1 The second Zagreb eccentricity index |\/|1*

4. Eccentricity based Zagreb indices T
of D[], for n=2t+1, where t>0 is given by

This section deals with some eccentricity based Zagreb
M. (D[n]) = 23232t% x 2' —19536t x 2' — 4598t +16196 x 2' +10912t —15912. ®)

Proof. When N =1 then t =0. We use Table 1 to get

M;(D[I)= > (ec(v))’

veV (D[L]
= 4x(4)? +2x(5)* +2x(6)* +2x(7)*

=284

= 23232(0%) x 2° —19536(0) x 2° — 4598(0?) +16196 x 2° +10912(0) —15912.

When N=3 then t =1.We use Tables 1-2 to get

M{(DI3]) = > (ec(v))’

veV (D[3])
= (4% (15)* +2x(16)° + 2x (17)* +2x(18)*) + (4% (19)* + 4x (20)* +
A% (21)* +4x(21)* +4x(22)* + 4% (23)* + 4% (24)* + 4x(25)°) +
(4x (26)2 +4x (27)2 +4x (28)2 +4x (29)2)
=30186
= 23232(1%) x 2" —19536(1) x 2* —4598(1%) +16196 x 2* +10912(1) —15912.

When N >5, then we use Tables 1—3 to get

M;(D[N)= D (ec(v))’
veV (D[n])
= (4x (11t +4)* +2x (11t +5)° + 2x (11t +6)* + 2x (11t + 7)?)
t
+(O_ (@M x (1 +11i —3)? + 2™ x (11t +11i — 2)* +
i=1
2 (L2t +12i —1)% + 2 x (12t +12 —1)? + 2" x (11t +11i)* +
2" 5 (L1t +110 +1) + 2" x (12t +11i + 2)% + 2" x (11t +11i + 3)?))

t . . -
+ (O (2" x (11t +11i +4)* + 2" x (11t +11i +5)* + 2" x (11t +11i +6)°) +
i=1

i(z‘+l x (11t +11i +7)%) + (2" x (22t + 7)?))

i=1
= 23232t% x 2' —19536t x 2' —4598t* +16196x 2" +10912t —15912.
The proof is complete.
Theorem 4.2 The second Zagreb-eccentricity index l\/ll* of D[n],for n=2t, where t>1 is given by
M, (D[n]) =19360t* x 2" — 28512t x 2" —4598t° + 20488 x 2" +14256t — 20488. 9)

Proof. When N'=2 then t =1. Using Table 4, we get

M (D[2]) = > Tec(v))*

veV
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= (4x (11)* +2x (12)* + 2x (13)* + 2x (14)*) + (4 x (15)* + 4 x (16)* +
4x(17)* +4x(17)* +4x (18)* +4x(19)* +4x (20)* + 4 x (21)*) +

=11824

=19360(1%) x 2" — 28512(1) x 2" —4598(1%) + 20488 x 2 +14256(1) — 20488.

When N >4, the using Tables 4 —6, we get

M (D[ND = > (ec(v))? +2" % (12t +11i + 3)?))
veV(DIn]) =19360t2 x 2! — 28512t x 2! — 4508t2 + 20488 x 2! +
14256t —20488.

= (4x(12)® + 2x (12t +1)% + 2x (11t +2)* + 2x (11t +3)?) + )
The proof is complete.

t . .
Q@™ x (11t +11i —7)* + 2" x (11t +11i — 6)* +

i1 Theorem 4.3 The third Zagreb eccentricity index
M, (D[n]) of D[n] for n=2t+1, is given by
2" (11t +11i —5)% + 2" x (11t +11i —5)* + 256 if t=0,
M;(D[n]) = {23232t% x 2' 20592t x 2' —4598t* . .
i+l (L1t +11i —4)* + i+ o (11t +11i —3)* + +16640x 2' +11396t —16384.

Proof. Using symmetry of the nanostar dendrimer D[n],
we use only one branch of D[n] as labeled in Fig. 2-3.

We take one representative from a set of vertices which
have same degree and eccentricity. These representatives

-1 )
+(1><2H1><(22t—1)2))+(z_1:(2 " (12t +120)% + are labeled by U, vV, W, X, y, &, b, ¢, d,, e,
fi, g h.

- t71 .
2" x (11t +11i—2)%) + > (2" x (11t +11i —1)?)
i=1
2" (LU +11i +1)% + 2" x (11t +12i + 2)? +

Table 7: The edge partition of D[n], with respect to the representatives of pair of end-vertices and their frequency of

occurrence. The eccentricities are taken from Table 1, Table 2 and Table 3, Here N isodd, { = n _1, 1<i<t —l_

2
Representative Eccentricity Frequency

[u,v] [11t +4,11t + 4] 2
[v,w] [11t + 4,11t + 5] 22
[w, x] [11t +5,11t + 6] 2
[, y] [11t+6,11t + 7] 2
[y.a] [11t +7,11t + 8] 02
[a,, 0] [11t+8,11t +9] 92
[b,c] [11t+9,11t +10] 23
[c.e] [11t+10,11t +11] 22
[e,, f,] [11t+11,11t +12] 22
[f.,0,] [11t+12,11t +13] 22
[9:h] [11t +13,11t +14] o2
[h,v] [11t +14,11t +15] 22
v, w] [11t +15,11t +16] 22
[w, %] [11t +16,11t +17] 22
ERA [11t +17,11t +18] 22
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Representative Eccentricity Frequency
Ly, a ] [11t+12i+ 7,11t +11(3i +1) - 3] 2i+2
[a.,,b.,,] | [11t+113+1)-3,11t+11(3i+1)—2] i+2
[b.,.c.] | [Mu+113G+1)—2,12t+11(i +1)—-1] i+3
[c....e..] [12t +212(3+1)-1,12t +121(i +1)] 0i+2
le.,, f...] [12t+12(i +1),12t +212(i +1) +1] 2i+2
[f... 0] | [11t+113G+1)+1,12t+113i+1)+2] 2i+2
(9.0, ] | [12+123G+1)+2,12t +11(i +1) + 3] i+2
[h.,vi, ] | [12+2123+1)+3,11t +11(i +1) + 4] i+2
vi,,w,1 | [12+12G+1)+4,11t+11(i +1) +5] oi+2
w,,, %] | [11+11(i+1)+5,11t +11(i +1) +6] 2i+2
[0 Vil | [12UA+113+1)+6,12t +11(i +1) + 7] i+2

When N=1 then t=0. We use Table 1 to compute M, as follows:

M (D[1]) = > ec(u)ec(v)

uvekE
=2x(4x4)+4%x(4x5)+2x(5%x6)+2x(6x7)
= 256.
When N =3, wehave t =1, Using Table 1 and Table 2, e compute |\/|; as follows:

M;(D[3]) = > ec(u)ec(v)

uvek

= (2x(15x15) +4x (15%x16) +2x (16 x17) + 2x (7 x18)) + (4 x (18x19) +
4x(19%x20)+4x(20x21) + 4% (20x21) + 4% (21x 22) + 4x (22x 23) +
4x(23%x24) +4x(24%x 25)) + (4% (25% 26) + 4x (26 x 27) + 4 x (28 % 29))
=28974.
When N >5, we use Tables 1 —3 to compute MZ* as follows:

M, (D[n]) = D ec(u)ec(v) = 2x (11t +4)x (11t +4) +4x (11t +4) x (11t +5) +

uvek

2x (11t +5) x (11t + 6) + 2x (11t +6) x (11t +7) +4x (11t +7) x (11t +8) + 2% x (11t +8) x (11t +9) +

2% x (11t +9) x (11t +10) + 2° x (11t +10) x (11t +11) + 2 x (11t +11) x (11t +12) + 2° x (11t +12) x (11t +13)
1225 (11t +13) x (L1t +14) + 22 x (11t +14) x (L1t +15) + 2% x (L1t +15) x (11t +16) + 22 x (11t +16) x (11t +17) +

t—1
2% x (LUt +17)x (11 +18) + (272 x (L1t +11i + 7) x (11t +11(i +1) —3) +

i=1
22 (LU +1131 +1) - 3) x (11t +11(>i +1) - 2) + 2" x (11t +11(>i +1) —2) x (11t +11x (i +1) —1) +
225 (LU +1231 +1) —1) x (LU +123 +2)) + 22 x (121t +12(31 +1)) x (11t +12(3i +1) +1) +
225 (11t +113 +1) +1) x (11t +1131 +1) + 2) + 2" x (LU +11(> +1) + 2) (11t +11( +1) +3) +
225 (11t +123 +1) + 3) x (LU +12(> +1) +4) + 22 x (11t +11(1 +1) + 4) x (11t +11(i +1) +5) +
22 (11t +113 +1) +5) x (U +11>i +1) +6) + 2" x (11t +11(>i +1) +6) x (11t +11(>i +1) + 7))
= 23232t* x 2' — 20592t x 2' —4598t” +16640x 2" +11396t —16384.

This completes the proof.
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Theorem 4.4 The third Zagreb eccentricity index of D[n]

for N =2t where t>1 isgiven by

. 11214
M. (DIn]) ={

Proof.

Table 8: The edge partition of D[n] with respect to the representatives of pair of end-vertices and their frequency of occurrence.

The eccentricities are taken from Table 4, Table 5 and Table 6. Here N iseven, t = N 1<i<t-1.
2

19360t* x 2" — 29392t x 2' — 4598t + 21136 x 2' +14740t —21136.

Representative Eccentricity Frequency
[u,v] [12t,11t] 2
[v, w] [11t,11t +1] 22
[w, x] [11t+1,11t + 2] 2
[x,¥] [11t+2,11t + 3] 2
ly,a] [11t +3,11t + 4] 22
[a,,b] [11t +12i—7,11t +11i —6] i+l
[b,c] [11t +12i—6,11t +11i —5] 2i+2
[c,.&] [11t +12i—5,12t +11i —4] i+l
[e,, f.] [11t +11i—4,11t +11i —3] i+l

[f,0,] [11t+11i—3,11t +11i — 2] i+l
[9;,h] [11t+121—2,11t +12i —1] i+l
[h.,v] [11t+121—-1,12t +11i] i+l
[vi,w] [11t +172i,12t +1%i +1] i+l
[w, %] [11t+11i+1,11t +11i + 2] 2+
[x,y:] [11t +12i +2,12t +11i + 3] i
[y, a.,] [11t +12i+ 3,12t +11(i +1) - 7] 2i+2
[a,,b] [22t — 7,22t — 6] ot
[b,.c] [22t — 6,22t — 5] ot+2
[c..e] [22t —5,22t — 4] ot
[e, f.] [22t — 4,22t - 3] ot
[f.0] [22t —3,22t - 2] ot
[9..h] [22t 2,22t 1] ot

When N =2 then t=1.We have

M;(D[2D)= D ec(u)ec(v)

uveE (D[2])

+4x(18x19) + 4x (19x 20) +4x (20x 21)

=11214.

When N >4 then using Tables 4 —6, we have

= 2x (11x11) + 4x (11x12) + 2x (12x13) + 2x (13x14)

+4x(14%x15) +4x (15%x16) +8x (17 x18) + 4x (17 x18)
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M (D[n]) =

> ec(u)ec(v)

uveE(D[n])
=2x(12t)x (11t) +4x (1) x (11t +1) + 2x (11t +1) x (11t + 2)
+2x (LU +2)x (11t +3) +4x (11t +3) x (11t + 4)

t-1
+ (2" x (11t +11i - 7) x (11t +11i - 6)

i=1

4212 (11t +11i — ) (11t +11i —5) + 2" x (11t +11i —5)

x (11t +11i —4) + 2" x (11t +12i —4) x (11t +11i - 3)

+2" % (11t +11i —3) x (11t +11i — 2)

+ 2 5 (L1t 411 — 2) x (12t +12i —1) + 2" x (11t +112i —1)

x (11t +110) + 2% x (12t +12i) x (11t +11i +1)

+ 2" 5 (12t +118 +1) x (12t +11i + 2) + 2" x (11t +11i + 2)

x (12t +11i +3) + 2" x (12t +11i +3) x (A1t +11(i +1) — 7))

+ 2" (11t +12t — 7) x (11t +11t —6) + 2% x (11t +11t — 6)

x (11t +11t —5) + 2" x (11t +11t —5) < (11t +11t — 4)

+ 2 (128 +11t —4) x (11t +11t —3) + 2" x (11t +11t — 3)

) (11t +11t —2) + 2" x (11t + 11t — 2) x (11t + 11t —1)
=19360t> x 2' — 29392t x 2" — 4598t + 21136 x 2" +14740t —21136.

This completes the proof.

5. Conclusion

In this paper, we consider a family of hetrofunctional
dendrimer HFD(ei) and compute their eccentric
connectivity indices. We also compute some eccentricity
based Zagreb indices for this famly of nanosar dendrimer.
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